Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579011

ABSTRACT

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Subject(s)
Neomycin , Riboswitch , Neomycin/metabolism , Neomycin/pharmacology , Molecular Dynamics Simulation , Riboswitch/genetics , Mutation , Molecular Conformation , Nucleic Acid Conformation , Ligands
2.
Nat Commun ; 15(1): 3370, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643169

ABSTRACT

Residue-level coarse-grained (CG) molecular dynamics (MD) simulation is widely used to investigate slow biological processes that involve multiple proteins, nucleic acids, and their complexes. Biomolecules in a large simulation system are distributed non-uniformly, limiting computational efficiency with conventional methods. Here, we develop a hierarchical domain decomposition scheme with dynamic load balancing for heterogeneous biomolecular systems to keep computational efficiency even after drastic changes in particle distribution. These schemes are applied to the dynamics of intrinsically disordered protein (IDP) droplets. During the fusion of two droplets, we find that the changes in droplet shape correlate with the mixing of IDP chains. Additionally, we simulate large systems with multiple IDP droplets, achieving simulation sizes comparable to those observed in microscopy. In our MD simulations, we directly observe Ostwald ripening, a phenomenon where small droplets dissolve and their molecules redeposit into larger droplets. These methods have been implemented in CGDYN of the GENESIS software, offering a tool for investigating mesoscopic biological processes using the residue-level CG models.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acids , Proteins , Software
3.
Phys Chem Chem Phys ; 26(13): 9906-9914, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38477212

ABSTRACT

Vibrational spectroscopy combined with theoretical calculations is a powerful tool for analyzing the interaction and conformation of peptides at the atomistic level. Nonetheless, identifying the structure becomes increasingly difficult as the peptide size grows large. One example is acetyl-SIVSF-N-methylamide, a capped pentapeptide, whose atomistic structure has remained unknown since its first observation [T. Sekiguchi, M. Tamura, H. Oba, P. Çarçarbal, R. R. Lozada-Garcia, A. Zehnacker-Rentien, G. Grégoire, S. Ishiuchi and M. Fujii, Angew. Chem., Int. Ed., 2018, 57, 5626-5629]. Here, we propose a novel conformational search method, which exploits the structure-spectrum correlation using a similarity score that measures the agreement of theoretical and experimental spectra. Surprisingly, the two conformers have distinctly different energy and geometry. The second conformer is 25 kJ mol-1 higher in energy than the other, lowest-energy conformer. The result implies that there are multiple pathways in the early stage of the folding process: one to the global minimum and the other to a different basin. Once such a structure is established, the second conformer is unlikely to overcome the barrier to produce the most stable structure due to a vastly different hydrogen bond network of the backbone. Our proposed method can characterize the lowest-energy conformer and kinetically trapped, high-energy conformers of complex biomolecules.

4.
ACS Cent Sci ; 10(2): 283-290, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435535

ABSTRACT

Enzymatic reactions that involve a luminescent substrate (luciferin) and enzyme (luciferase) from luminous organisms enable a luminescence detection of target proteins and cells with high specificity, albeit that conventional assay design requires a prelabeling of target molecules with luciferase. Here, we report a luciferase-independent luminescence assay in which the target protein directly catalyzes the oxidative luminescence reaction of luciferin. The SARS-CoV-2 antigen (spike) protein catalyzes the light emission of Cypridina luciferin, whereas no such catalytic function was observed for salivary proteins. This selective luminescence reaction is due to the enzymatic recognition of the 3-(1-guanidino)propyl group in luciferin at the interfaces between the units of the spike protein, allowing a specific detection of the spike protein in human saliva without sample pretreatment. This method offers a novel platform to detect virus antigens simply and rapidly without genetic manipulation or antibodies.

5.
J Am Chem Soc ; 146(14): 9790-9800, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38549219

ABSTRACT

HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.


Subject(s)
Molecular Dynamics Simulation , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/chemistry , Proto-Oncogene Proteins c-mdm2/chemistry , Protein Binding , Magnetic Resonance Spectroscopy
6.
Biophys Chem ; 307: 107190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290241

ABSTRACT

Membrane proteins play essential roles in various biological functions within the cell. One of the most common functional regulations involves the dimerization of two single-pass transmembrane (TM) helices. Glycophorin A (GpA) and amyloid precursor protein (APP) form TM homodimers in the membrane, which have been investigated both experimentally and computationally. The homodimer structures are well characterized using only four collective variables (CVs) when each TM helix is stable. The CVs are the interhelical distance, the crossing angle, and the Crick angles for two TM helices. However, conformational sampling with multi-dimensional replica-exchange umbrella sampling (REUS) requires too many replicas to sample all the CVs for exploring the conformational landscapes. Here, we show that the bias-exchange adaptively biased molecular dynamics (BE-ABMD) with the four CVs effectively explores the free-energy landscapes of the TM helix dimers of GpA, wild-type APP and its mutants in the IMM1 implicit membrane. Compared to the original ABMD, the bias-exchange algorithm in BE-ABMD can provide a more rapidly converged conformational landscape. The BE-ABMD simulations could also reveal TM packing interfaces of the membrane proteins and the dependence of the free-energy landscapes on the membrane thickness. This approach is valuable for numerous other applications, including those involving explicit solvent and a lipid bilayer in all-atom force fields or Martini coarse-grained models, and enhances our understanding of protein-protein interactions in biological membranes.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Membrane Proteins/chemistry , Cell Membrane , Lipid Bilayers/chemistry , Dimerization
7.
J Comput Chem ; 45(8): 498-505, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37966727

ABSTRACT

The rapid increase in computational power with the latest supercomputers has enabled atomistic molecular dynamics (MDs) simulations of biomolecules in biological membrane, cytoplasm, and other cellular environments. These environments often contain a million or more atoms to be simulated simultaneously. Therefore, their trajectory analyses involve heavy computations that can become a bottleneck in the computational studies. Spatial decomposition analysis (SPANA) is a set of analysis tools in the Generalized-Ensemble Simulation System (GENESIS) software package that can carry out MD trajectory analyses of large-scale biological simulations using multiple CPU cores in parallel. SPANA applies the spatial decomposition of a large biological system to distribute structural and dynamical analyses into individual CPU cores, which reduces the computational time and the memory size, significantly. SPANA opens new possibilities for detailed atomistic analyses of biomacromolecules as well as solvent water molecules, ions, and metabolites in MD simulation trajectories of very large biological systems containing more than millions of atoms in cellular environments.


Subject(s)
Molecular Dynamics Simulation , Software , Computers
8.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37581417

ABSTRACT

iSoLF is a coarse-grained (CG) model for lipid molecules with the implicit-solvent approximation used in molecular dynamics (MD) simulations of biological membranes. Using the original iSoLF (iSoLFv1), MD simulations of lipid bilayers consisting of either POPC or DPPC and these bilayers, including membrane proteins, can be performed. Here, we improve the original model, explicitly treating the electrostatic interactions between different lipid molecules and adding CG particle types. As a result, the available lipid types increase to 30. To parameterize the potential functions of the new model, we performed all-atom MD simulations of each lipid at three different temperatures using the CHARMM36 force field and the modified TIP3P model. Then, we parameterized both the bonded and non-bonded interactions to fit the area per lipid and the membrane thickness of each lipid bilayer by using the multistate Boltzmann Inversion method. The final model reproduces the area per lipid and the membrane thickness of each lipid bilayer at the three temperatures. We also examined the applicability of the new model, iSoLFv2, to simulate the phase behaviors of mixtures of DOPC and DPPC at different concentrations. The simulation results with iSoLFv2 are consistent with those using Dry Martini and Martini 3, although iSoLFv2 requires much fewer computations. iSoLFv2 has been implemented in the GENESIS MD software and is publicly available.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Lipid Bilayers/metabolism , Solvents , Temperature , Software
9.
PLoS Comput Biol ; 19(7): e1011321, 2023 07.
Article in English | MEDLINE | ID: mdl-37486948

ABSTRACT

The phase separation model for transcription suggests that transcription factors (TFs), coactivators, and RNA polymerases form biomolecular condensates around active gene loci and regulate transcription. However, the structural details of condensates remain elusive. In this study, for Nanog, a master TF in mammalian embryonic stem cells known to form protein condensates in vitro, we examined protein structures in the condensates using residue-level coarse-grained molecular simulations. Human Nanog formed micelle-like clusters in the condensate. In the micelle-like cluster, the C-terminal disordered domains, including the tryptophan repeat (WR) regions, interacted with each other near the cluster center primarily via hydrophobic interaction. In contrast, hydrophilic disordered N-terminal and DNA-binding domains were exposed on the surface of the clusters. Electrostatic attractions of these surface residues were responsible for bridging multiple micelle-like structures in the condensate. The micelle-like structure and condensate were dynamic and liquid-like. Mutation of tryptophan residues in the WR region which was implicated to be important for a Nanog function resulted in dissolution of the Nanog condensate. Finally, to examine the impact of Nanog cluster to DNA, we added DNA fragments to the Nanog condensate. Nanog DNA-binding domains exposed to the surface of the micelle-like cluster could recruit more than one DNA fragments, making DNA-DNA distance shorter.


Subject(s)
Micelles , Tryptophan , Animals , Humans , DNA/genetics , Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Tryptophan/metabolism
10.
J Comput Chem ; 44(20): 1740-1749, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37141320

ABSTRACT

Generalized replica exchange with solute tempering (gREST) is one of the enhanced sampling algorithms for proteins or other systems with rugged energy landscapes. Unlike the replica-exchange molecular dynamics (REMD) method, solvent temperatures are the same in all replicas, while solute temperatures are different and are exchanged frequently between replicas for exploring various solute structures. Here, we apply the gREST scheme to large biological systems containing over one million atoms using a large number of processors in a supercomputer. First, communication time on a multi-dimensional torus network is reduced by matching each replica to MPI processors optimally. This is applicable not only to gREST but also to other multi-copy algorithms. Second, energy evaluations, which are necessary for the multistate bennet acceptance ratio (MBAR) method for free energy estimations, are performed on-the-fly during the gREST simulations. Using these two advanced schemes, we observed 57.72 ns/day performance in 128-replica gREST calculations with 1.5 million atoms system using 16,384 nodes in Fugaku. These schemes implemented in the latest version of GENESIS software could open new possibilities to answer unresolved questions on large biomolecular complex systems with slow conformational dynamics.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Software , Temperature , Acceleration
11.
JACS Au ; 3(3): 834-848, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006777

ABSTRACT

Biomolecular condensation is involved in various cellular processes; therefore, regulation of condensation is crucial to prevent deleterious protein aggregation and maintain a stable cellular environment. Recently, a class of highly charged proteins, known as heat-resistant obscure (Hero) proteins, was shown to protect other client proteins from pathological aggregation. However, the molecular mechanisms by which Hero proteins protect other proteins from aggregation remain unknown. In this study, we performed multiscale molecular dynamics (MD) simulations of Hero11, a Hero protein, and the C-terminal low-complexity domain (LCD) of the transactive response DNA-binding protein 43 (TDP-43), a client protein of Hero11, under various conditions to examine their interactions with each other. We found that Hero11 permeates into the condensate formed by the LCD of TDP-43 (TDP-43-LCD) and induces changes in conformation, intermolecular interactions, and dynamics of TDP-43-LCD. We also examined possible Hero11 structures in atomistic and coarse-grained MD simulations and found that Hero11 with a higher fraction of disordered region tends to assemble on the surface of the condensates. Based on the simulation results, we have proposed three possible mechanisms for Hero11's regulatory function: (i) In the dense phase, TDP-43-LCD reduces contact with each other and shows faster diffusion and decondensation due to the repulsive Hero11-Hero11 interactions. (ii) In the dilute phase, the saturation concentration of TDP-43-LCD is increased, and its conformation is relatively more extended and variant, induced by the attractive Hero11-TDP-43-LCD interactions. (iii) Hero11 on the surface of small TDP-43-LCD condensates can contribute to avoiding their fusion due to repulsive interactions. The proposed mechanisms provide new insights into the regulation of biomolecular condensation in cells under various conditions.

12.
J Chem Phys ; 158(11): 115101, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948822

ABSTRACT

Tryptophan synthase (TRPS) is a bifunctional enzyme consisting of α- and ß-subunits that catalyzes the last two steps of L-tryptophan (L-Trp) biosynthesis. The first stage of the reaction at the ß-subunit is called ß-reaction stage I, which converts the ß-ligand from an internal aldimine [E(Ain)] to an α-aminoacrylate [E(A-A)] intermediate. The activity is known to increase 3-10-fold upon the binding of 3-indole-D-glycerol-3'-phosphate (IGP) at the α-subunit. The effect of α-ligand binding on ß-reaction stage I at the distal ß-active site is not well understood despite the abundant structural information available for TRPS. Here, we investigate the ß-reaction stage I by carrying out minimum-energy pathway searches based on a hybrid quantum mechanics/molecular mechanics (QM/MM) model. The free-energy differences along the pathway are also examined using QM/MM umbrella sampling simulations with QM calculations at the B3LYP-D3/aug-cc-pVDZ level of theory. Our simulations suggest that the sidechain orientation of ßD305 near the ß-ligand likely plays an essential role in the allosteric regulation: a hydrogen bond is formed between ßD305 and the ß-ligand in the absence of the α-ligand, prohibiting a smooth rotation of the hydroxyl group in the quinonoid intermediate, whereas the dihedral angle rotates smoothly after the hydrogen bond is switched from ßD305-ß-ligand to ßD305-ßR141. This switch could occur upon the IGP-binding at the α-subunit, as evidenced by the existing TRPS crystal structures.


Subject(s)
Tryptophan Synthase , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism , Allosteric Regulation , Binding Sites , Ligands , Protein Conformation , Kinetics
13.
Phys Chem Chem Phys ; 25(5): 3595-3606, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36647771

ABSTRACT

Computational de novo protein design involves iterative processes consisting of amino acid sequence design, structural modelling and scoring, and design validation by synthesis and experimental characterisation. Recent advances in protein structure prediction and modelling methods have enabled the highly efficient and accurate design of water-soluble proteins. However, the design of membrane proteins remains a major challenge. To advance membrane protein design, considering the higher complexity of membrane protein folding, stability, and dynamic interactions between water, ions, lipids, and proteins is an important task. For introducing explicit solvents and membranes to these design methods, all-atom molecular dynamics (MD) simulations of designed proteins provide useful information that cannot be obtained experimentally. In this review, we first describe two major approaches to designing transmembrane α-helical assemblies, consensus and de novo design. We further illustrate recent MD studies of membrane protein folding related to protein design, as well as advanced treatments in molecular models and conformational sampling techniques in the simulations. Finally, we discuss the possibility to introduce MD simulations after the existing static modelling and screening of design decoys as an additional step for refinement of the design, which considers membrane protein folding dynamics and interactions with explicit membranes.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Molecular Conformation , Membrane Proteins/chemistry , Protein Conformation, alpha-Helical , Protein Folding , Water
14.
Biophys J ; 122(14): 2910-2920, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36397671

ABSTRACT

A single mutation from aspartate to glycine at position 614 has dominated all circulating variants of the severe acute respiratory syndrome coronavirus 2. D614G mutation induces structural changes in the spike (S) protein that strengthen the virus infectivity. Here, we use molecular dynamics simulations to dissect the effects of mutation and 630-loop rigidification on S-protein structure. The introduction of the mutation orders the 630-loop structure and thereby induces global structural changes toward the cryoelectron microscopy structure of the D614G S-protein. The ordered 630-loop weakens local interactions between the 614th residue and others in contrast to disordered structures in the wild-type protein. The mutation allosterically alters global interactions between receptor-binding domains, forming an asymmetric and mobile down conformation and facilitating transitions toward up conformation. The loss of salt bridge between D614 and K854 upon the mutation generally stabilizes S-protein protomer, including the fusion peptide proximal region that mediates membrane fusion. Understanding the molecular basis of D614G mutation is crucial as it dominates in all variants of concern, including Delta and Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cryoelectron Microscopy , Spike Glycoprotein, Coronavirus/genetics , Mutation
15.
PLoS Comput Biol ; 18(12): e1010384, 2022 12.
Article in English | MEDLINE | ID: mdl-36580448

ABSTRACT

High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.


Subject(s)
Microscopy, Atomic Force , Microscopy, Atomic Force/methods , Markov Chains
16.
Cell Rep ; 41(10): 111760, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476867

ABSTRACT

Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps Ca2+ into the endoplasmic reticulum (ER). Herein, we present cryo-electron microscopy (EM) structures of three intermediates of SERCA2b: Ca2+-bound phosphorylated (E1P·2Ca2+) and Ca2+-unbound dephosphorylated (E2·Pi) intermediates and another between the E2P and E2·Pi states. Our cryo-EM analysis demonstrates that the E1P·2Ca2+ state exists in low abundance and preferentially transitions to an E2P-like structure by releasing Ca2+ and that the Ca2+ release gate subsequently undergoes stepwise closure during the dephosphorylation processes. Importantly, each intermediate adopts multiple sub-state structures including those like the next one in the catalytic series, indicating conformational overlap at transition steps, as further substantiated by atomistic molecular dynamic simulations of SERCA2b in a lipid bilayer. The present findings provide insight into how enzymes accelerate catalytic cycles.


Subject(s)
Cryoelectron Microscopy
17.
Proc Natl Acad Sci U S A ; 119(52): e2212207119, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36538482

ABSTRACT

The 99-residue C-terminal domain of amyloid precursor protein (APP-C99), precursor to amyloid beta (Aß), is a transmembrane (TM) protein containing intrinsically disordered N- and C-terminal extramembrane domains. Using molecular dynamics (MD) simulations, we show that the structural ensemble of the C99 monomer is best described in terms of thousands of states. The C99 monomer has a propensity to form ß-strand in the C-terminal extramembrane domain, which explains the slow spin relaxation times observed in paramagnetic probe NMR experiments. Surprisingly, homodimerization of C99 not only narrows the conformational ensemble from thousands to a few states through the formation of metastable ß-strands in extramembrane domains but also stabilizes extramembrane α-helices. The extramembrane domain structure is observed to dramatically impact the homodimerization motif, resulting in the modification of TM domain conformations. Our study provides an atomic-level structural basis for communication between the extramembrane domains of the C99 protein and TM homodimer formation. This finding could serve as a general model for understanding the influence of disordered extramembrane domains on TM protein structure.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Amyloid beta-Protein Precursor/metabolism , Dimerization , Amyloid beta-Peptides/metabolism , Protein Conformation, beta-Strand , Protein Domains , Amyloid Precursor Protein Secretases/metabolism
18.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080494

ABSTRACT

Proper balance between protein-protein and protein-water interactions is vital for atomistic molecular dynamics (MD) simulations of globular proteins as well as intrinsically disordered proteins (IDPs). The overestimation of protein-protein interactions tends to make IDPs more compact than those in experiments. Likewise, multiple proteins in crowded solutions are aggregated with each other too strongly. To optimize the balance, Lennard-Jones (LJ) interactions between protein and water are often increased about 10% (with a scaling parameter, λ = 1.1) from the existing force fields. Here, we explore the optimal scaling parameter of protein-water LJ interactions for CHARMM36m in conjunction with the modified TIP3P water model, by performing enhanced sampling MD simulations of several peptides in dilute solutions and conventional MD simulations of globular proteins in dilute and crowded solutions. In our simulations, 10% increase of protein-water LJ interaction for the CHARMM36m cannot maintain stability of a small helical peptide, (AAQAA)3 in a dilute solution and only a small modification of protein-water LJ interaction up to the 3% increase (λ = 1.03) is allowed. The modified protein-water interactions are applicable to other peptides and globular proteins in dilute solutions without changing thermodynamic properties from the original CHARMM36m. However, it has a great impact on the diffusive properties of proteins in crowded solutions, avoiding the formation of too sticky protein-protein interactions.


Subject(s)
Intrinsically Disordered Proteins , Water , Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Peptides , Thermodynamics , Water/chemistry
19.
J Chem Phys ; 157(7): 075101, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35987583

ABSTRACT

To understand protein folding mechanisms from molecular dynamics (MD) simulations, it is important to explore not only folded/unfolded states but also representative intermediate structures on the conformational landscape. Here, we propose a novel approach to construct the landscape using the uniform manifold approximation and projection (UMAP) method, which reduces the dimensionality without losing data-point proximity. In the approach, native contact likelihood is used as feature variables rather than the conventional Cartesian coordinates or dihedral angles of protein structures. We tested the performance of UMAP for coarse-grained MD simulation trajectories of B1 domain in protein G and observed on-pathway transient structures and other metastable states on the UMAP conformational landscape. In contrast, these structures were not clearly distinguished on the dimensionality reduced landscape using principal component analysis or time-lagged independent component analysis. This approach is also useful to obtain dynamical information through Markov state modeling and would be applicable to large-scale conformational changes in many other biomacromolecules.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Molecular Conformation , Principal Component Analysis , Proteins/chemistry
20.
Front Mol Biosci ; 9: 878830, 2022.
Article in English | MEDLINE | ID: mdl-35573746

ABSTRACT

Molecular dynamics (MD) simulations are increasingly used to study various biological processes such as protein folding, conformational changes, and ligand binding. These processes generally involve slow dynamics that occur on the millisecond or longer timescale, which are difficult to simulate by conventional atomistic MD. Recently, we applied a two-dimensional (2D) replica-exchange MD (REMD) method, which combines the generalized replica exchange with solute tempering (gREST) with the replica-exchange umbrella sampling (REUS) in kinase-inhibitor binding simulations, and successfully observed multiple ligand binding/unbinding events. To efficiently apply the gREST/REUS method to other kinase-inhibitor systems, we establish modified, practical protocols with non-trivial simulation parameter tuning. The current gREST/REUS simulation protocols are tested for three kinase-inhibitor systems: c-Src kinase with PP1, c-Src kinase with Dasatinib, and c-Abl kinase with Imatinib. We optimized the definition of kinase-ligand distance as a collective variable (CV), the solute temperatures in gREST, and replica distributions and umbrella forces in the REUS simulations. Also, the initial structures of each replica in the 2D replica space were prepared carefully by pulling each ligand from and toward the protein binding sites for keeping stable kinase conformations. These optimizations were carried out individually in multiple short MD simulations. The current gREST/REUS simulation protocol ensures good random walks in 2D replica spaces, which are required for enhanced sampling of inhibitor dynamics around a target kinase.

SELECTION OF CITATIONS
SEARCH DETAIL
...